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Abstract

Mixture os increasing failure rate distributions (IFR) can decrease
at least in some intervals of time. Usually this property is observed
asymptotically as t → ∞, which is due to the fact that a mixture
failure rate is ’bent down’, as the weakest populations are dying out
first. We consider a survival model, generalizing very well known in
reliability and survival analysis additive hazards, proportional hazards
and accelerated life model. We obtain new explicit asymptotic rela-
tions for a general setting and study specific cases. Under reasonable
assumptions we prove that asymptotic behavior of the mixture failure
rate depends only on the behavior of the mixing distribution in the
neighborhood of the left end point of its support and not on the whole
mixing distribution.

Keywords: mixture of distributions, decreasing failure rate, increasing fail-
ure rate, proportional hazardx model, accelerated life model.
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1 Introduction

Mixtures of decreasing failure rate (DFR) distributions are always DFR (Bar-
low and Proschan, 1975). On the other hand, mixtures of increasing failure
rate distributions (IFR) can decrease at least in some intervals of time, which
means that the IFR class of distributions is not closed under the operation
of mixing (Lynch, 1999). As IFR distributions usually model lifetimes gov-
erned by aging processes, it means that the operation of mixing can change
the pattern of aging, e.g., from positive aging (IFR) to the negative aging
(DFR). These important facts should be taken into account in applications.

One can hardly find homogeneous populations in real life and mixtures
of distributions usually present an effective tool for modelling heterogeneity.
A natural specific approach for this modelling exploits a notion of a non-
negative random unobserved parameter (frailty) Z introduced by Vaupel
et al (1979) in a demographic context. This, in fact, leads to considering a
random failure rate λ(t, Z). As the failure rate is a conditional characteristic,
the ’ordinary’ expectation E[λ(t, Z)] with respect to Z does not define a
mixture failure rate λm(t) and a proper conditioning should be performed
(Finkelstein, 2004).

A convincing ’experiment’, showing the deceleration in the observed fail-
ure rate is performed by nature. It is well-known that the human mortality
follows the Gompertz lifetime distribution with exponentially increasing mor-
tality rate. Assume that heterogeneity can be described by the proportional
Gamma-frailty model:

λ(t, Z) = Zαeβt,

where α and β are positive constants, defining a baseline mortality rate. Due
to the computational simplicity, the Gamma-frailty model is practically the
only one used in applications so far.

It can be shown (see, e.g., equation (29) in the current paper) that the
mixture failure rate λm(t) in this case is monotone in [0,∞] and asymptoti-
cally tends to a constant as t →∞. It is monotonically increasing, however,
for the real values of parameters of this model. This fact explains recently
observed deceleration in human mortality for oldest old (human mortality
plateau, as in Thatcher (1999)). A similar result is experimentally obtained
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for a large cohort of medflies by Carey et al . On the other hand, in engineer-
ing applications the operation of mixing can result even in a more dramatic
effect: the mixture failure rate is increasing in [0, tm), tm > 0 and decreas-
ing asymptotically to 0 in [tm,∞), which, e.g., was experimentally observed
in Finkelstein (2005) for the heterogeneous sample of miniature light bulbs.
This fact is easily explained theoretically via the gamma frailty model with a
baseline failure rate increasing, in accordance with a Weibull law, as a power
function (Gupta and Gupta, 1996 ; Finkelstein and Esaulova, 2001 ).

In Block et al (2003) it was proved that if the failure rate of each subpopu-
lation converges to a constant and this convergence is uniform, then the mix-
ture failure rate converges to the failure rate of the strongest subpopulation:
the weakest subpopulations are dying out first. (For convenience from now
on we shall use where appropriate the term ”population” instead of ”subpop-
ulation”) These authors generalize a case of constant in time failure rates of
populations, considered by Clarotti and Spizzichino (1990) and present a fur-
ther development of Block et al (1993) (see also Lynn and Singpurwalla, 1997
; Gurland and Sethuraman, 1995 ). In Block and Joe (1997) the following
asymptotic result, which also addresses the issue of ultimate monotonicity,
was obtained: let z0 be a realization of a frailty Z, which corresponds to the
strongest population. If λ(t, z)/λ(t, z0) uniformly decreases as t → ∞, then
λm(t)/λ(t, z0) also decreases. If, in addition, limt→∞ λ(t, z0) exists, then this
quotient decreases to 1.

The recent paper of Li (2005) generalizes the results of Block et al (2003a),
using the similar analytical tools and approaches. Instead of assuming that
each individual failure rate has a limit, the author assumes that there exists
an asymptotic baseline function λ(t) such that the ratio of each individual
failure rate with the asymptotic baseline function λ(t, z)/λ(t) has a limit.
He shows that under certain conditions the ratio of the mixture failure rate
with the asymptotic baseline function has a limit. As in Block et al (2003)
it is shown that this limit is the corresponding essential infimum. Again, the
stringent condition of the uniform convergence of λ(t, z)/λ(t) to some a(z)
is imposed. Therefore this paper combines the analytical reasoning of Block
et al (2003a) with the ’ratio approach’ of Block and Joe (1997).

The models in the foregoing papers are, in fact, generalized proportional
hazards models. They are based on asymptotic equivalence λ(t, z) ∼ λ(t)a(z)
in the sense of the uniform convergence of the ratio to 1, which is, as already
mentioned, a rather strong assumption. Besides, the strongest population is
not always identifiable.
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The goal of the current paper is to try to find a balance between the gener-
ality of a model and a possibility of obtaining explicit asymptotic results
for the mixture failure rate λm(t). We suggest a class of distributions, which
hopefully meets this requirement and develop a new for this kind of appli-
cations approach, related to the ideology of generalized convolutions, e.g.,
Laplace and Fourie transforms and, especially, Mellin convolutions (Bingham
et al, 1987 ). For proving our asymptotic results we use a standard technique
similar to the one used for obtaining Abelian, Tauberian and Mercerian-type
theorems, although our theorems are not the direct corollaries of results in
this field. In line with this relationship it turns out that asymptotic behavior
of mixture failure rates for the suggested class of lifetime distributions de-
pends only on the behavior of the mixing distribution in the neighborhood
of infz{π(z) > 0} and not on the whole mixing pdf π(z).

After defining a survival model in Section 2, we formulate our main theo-
rems in Section 3 and consider important for applications examples in Section
4. As the proofs are more technical than we hoped them to be, they are de-
ferred to a special Section 5.

2 The survival model

Let T ≥ 0 be a lifetime random variable with Cdf F (t) (F̄ (t) = 1 − F (t)).
Assume that F (t) is indexed by a non-negative random variable Z with a pdf
π(z) and support in [0,∞):

P (T ≤ t|Z = z) ≡ P (R ≤ t|z) = F (t, z)

and that the pdf f(t, z) exists. Therefore the corresponding failure rate for
every fixed z is λ(t, z) = f(t, z)/F̄ (t, z). The support [a, b], a > 0, b < ∞ can
be also considered. Thus, the mixture Cdf and pdf are defined by

Fm(t) =

∫ ∞

0

F (t, z)π(z)dz, fm(t) =

∫ ∞

0

f(t, z)π(z)dz,

respectively. The mixture failure rate is

λm(t) =
fm(t)

F̄m(t)
=

∫∞
0

f(t, z)π(z)dz∫∞
0

F̄ (t, z)π(z)dz
, (1)

4



Denote, as usually, the cumulative failure rate by:

Λ(t, z) =

∫ t

0

λ(u, z)du.

We will define a class of lifetime distributions F (t, z) and will study as-
ymptotic behavior of the corresponding mixture failure rate λm(t). It is more
convenient at the start to give this definition in terms of the cumulative fail-
ure rate Λ(t, z, rather than in terms of the failure rate λ(t, z). The basic
model is given by the following relation:

Λ(t, z) = A(zφ(t)) + ψ(t). (2)

General assumptions for the model (2):
Natural properties of the cumulative failure rate of the absolutely continuous
distribution F (t, z) (for ∀z ∈ [0,∞)) imply that the functions: A(s), φ(t) and
ψ(t) are differentiable, the right hand side of (2) is non-decreasing in t and
tends to infinity as t → ∞ and that A(zφ(0)) + ψ(0) = 0. Therefore, these
properties will be assumed throughout the paper, although some of them will
not be needed for formal proofs.

An important additional simplifying assumption is that

A(s), s ∈ [0,∞); φ(t), t ∈ [0,∞)

are increasing functions of their arguments, although some generalizations
(e.g., for ultimately increasing functions) can be easily performed. Therefore,
we will view 1− e−A(zφ(t)), z 6= 0 in this paper as a lifetime Cdf.

It should be noted, that model (2) can be also easily generalized to the
form Λ(t, z) = A(g(z)φ(t)) + ψ(t) + η(z) for some properly defined func-
tions g(z) and η(z). However, we cannot go generalizing further (at least,
at this stage) and the multiplicative form of arguments in A(g(z)φ(t)) is
important for our method of deriving asymptotic relations. It is also clear
that the additive term ψ(t), although important in applications, gives only
a slight generalization for further analysis of λm(t), as (2) can be interpreted
in terms of two components in series (or, equivalently, via two competing
risks). However, this term will be essential in Section 3, while defining the
strongest population.

The failure rate corresponding to the cumulative failure rate Λ(t, z) is

λ(t, z) = zφ′(t)A′(zφ(t)) + ψ(t) (3)
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Now we are able to explain, why we start with the cumulative failure
rate and not with the failure rate itself, as often in lifetime modeling. The
reason is that one can easily suggest intuitive interpretations for (2), whereas
it is certainly not so simple to interpret the failure rate structure in the form
(3) without stating that it just follows from the structure of the cumulative
failure rate.

Relation (2) defines a rather broad class of survival models which can
be used, e.g., for modelling an impact of environment on characteristics of
survival. The widely used in reliability, survival analysis and risk analysis
proportional hazards (PH), additive hazards (AH) and accelerated life (ALM)
models, are the obvious specific cases of our relations (2) or (3):

PH (multiplicative) Model:

Let
A(u) ≡ u, φ(t) = Λ(t), ψ(t) = 0.

Then

λ(t, z) = zλ(t), Λ(t, z) = zΛ(t). (4)

Accelerated Life Model:

Let
A(u) ≡ Λ(u), φ(t) = t, ψ(t) = 0.

Then

Λ(t, z) =

∫ tz

0

λ(u)du = Λ(tz), λ(t, z) = zλ(tz). (5)

AH Model:

Let
A(u) ≡ u, φ(t) = t, ψ(t) is increasing, ψ(0) = 0.

Then

λ(t, z) = z + ψ′(t), Λ(t, z) = zt + ψ(t). (6)

The functions λ(t) and φ′(t) play the role of baseline failure rates in
equations (4), (5) and (6), respectively. Note that in all these models, the
functions φ(t) and A(s) are monotonically increasing.
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Asymptotic behavior of mixture failure rates for PH and AH models was
studied for some specific mixing distributions, e.g., in Gurland and Sethura-
man (1995) and Finkelstein and Esaulova (2001a) . On the other hand, as
far as we know, the mixture failure rate for the ALM was considered at a
descriptive level only in Anderson and Louis (1995).

3 General results

The next theorem derives an asymptotic formula for the mixture failure rate
λm(t) under rather mild assumptions.

Theorem 1 Let the cumulative failure rate Λ(t, z) be given by model (2) and
the mixing pdf π(z) be defined as

π(z) = zαπ1(z), (7)

where α > −1 and π1(z), π1(0) 6= 0, is a bounded in [0,∞) and continuous
at z = 0 function.

Assume also that
φ(t) →∞ as t →∞ (8)

and ∫ ∞

0

e−A(s)sαds < ∞, (9)

where A(s) is also ultimately increasing.
Then

λm(t)− ψ′(t) ∼ (α + 1)
φ′(t)
φ(t)

. (10)

By relation (10) we, as usual, mean asymptotic equivalence and write
a(t) ∼ b(t) as t →∞, if limt→∞[a(t)/b(t)] = 1.

It is easy to see that assumption (7) holds for the main lifetime distri-
butions such as Weibull, Gamma, lognormal etc. Assumption (8) states a
natural condition for the function φ(t), which can be often viewed as a scale
transformation. Condition (9) means that the Cdf 1 − e−A(s) should not be
’too heavy tailed’ (as e.g. the Pareto distribution 1−s−β, for s ≥ 1, β−α > 1)
and in our assumptions equivalent to the condition of existence of the mo-
ment of order α + 1 for this Cdf. Examples of the next section will clearly
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show that these conditions are not stringent at all and can be easily met in
most practical situations.

A crucial feature of this result is that asymptotic behavior of the mixture
failure rate depends only (omitting an obvious additive term ψ(t)) on the
behavior of the mixing distribution in the neighborhood of zero and on the
derivative of the logarithm of the scale function φ(t) : (log φ(t))′ = φ′(t)/φ(t).
When π(0) 6= 0 and π(z) is bounded in [0,∞), the result does not depend
on the mixing distribution at all , as α = 0!

Theorem 1 (as well as later theorems 2 and 4) can be formally generalized
to the case when the mixing random variable Z does not necessarily posses
an absolutely continuous Cdf in [0,∞): it is sufficient that it should be
absolutely continuous (from the right) at z = 0.

We can formulate a more general result, which states a similar dependence
on the behavior of the mixing distribution at zero in terms of asymptotic
comparison of two mixture failure rates:

If, under some assumptions, the two mixing distributions are equivalent
at z = 0 , then the mixture failure rates are equivalent as t →∞.

Formally:

Theorem 2 Let f(t, z) and π(z) be the lifetime and mixing pdf’s in a general
mixing model (2), respectively. Assume that there exists a positive function
α(t), which is ultimately decreasing to 0 as t →∞ and that

∫ α(t)

0
f(t, z)π(z)dz∫∞

0
f(t, z)π(z)dz

→ 1. (11)

Denote another mixing pdf by ρ(z) and assume that ρ(z)/π(z) is bounded in
[0,∞), continuous at 0, and limz→0 ρ(z)/π(z) 6= 0. Then:

λπ
m(t) ≡

∫∞
0

f(t, z)π(z)dz∫∞
0

F̄ (t, z)π(z)dz
∼

∫∞
0

f(t, z)ρ(z)dz∫∞
0

F̄ (t, z)ρ(z)dz
≡ λρ

m(t) (12)

as t →∞.

It is worth noting that if ψ ≡ 0 and all other conditions of Theorem 1
hold, condition (8) of this theorem guarantees assumption (11).

It is important, that for applying Theorem 2 we do not need a specific
form of a survival model. As it will be seen from the proof, π(z) and ρ(z)
also need not necessarily be probability density functions (local integrability,
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in fact, is sufficient). The following corollary exploits the latter fact for the
case when π(z) ≡ 1:

Corollary 1 Let f(x, t) be a lifetime pdf in a general mixing model (2).
Assume that there exists a positive function α(t), such that α(t) is ultimately
decreasing to zero as t →∞ and

∫ α(t)

0
f(t, z)dz∫∞

0
f(t, z)dz

→ 1. (13)

Let ρ(z) be positive function bounded in [0,∞), continuous at zero and ρ(0) 6=
0. Then: ∫∞

0
f(t, z)ρ(z)dz∫∞

0
F̄ (t, z)ρ(z)dz

∼
∫∞
0

f(t, z)dz∫∞
0

F̄ (t, z)dz
. (14)

as t →∞.

Theorems 1 and 2 consider the case when the support of a mixing distrib-
ution includes 0: z ∈ [0,∞). If the support is separated from 0, the situation
changes significantly and we can observe a well-known principle that the mix-
ture failure rate tends to the failure rate of the strongest population (Block
and Joe, 1992; Block et al, 2003; Finkelstein and Esaulova, 2001a).

Theorem 3 Let the class of lifetime distributions be defined by equation (2),
where φ(t) →∞ and A(s) is twice differentiable. Assume that as s →∞:

A′′(s)
(A′(s))2

→ 0 (15)

and
sA′(s) →∞ (16)

Assume also that ∀ b, c > 0, b < c the quotient A′(bs)/A′(cs) is bounded as
s →∞.

Let the mixing pdf π(z) be defined in [a,∞), a > 0, bounded in this inter-
val, continuous at z = a, and π(a) 6= 0.

Then
λm(t)− ψ′(t) ∼ aφ′(t)A′(aφ(t)). (17)
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It is clear that conditions (15) and (16) trivially hold for specific multi-
plicative and additive models of the previous section. We will discuss them
within the framework of the accelerated life model later. More generally,
these conditions hold, if A(s) belongs to a class of functions of smooth vari-
ation (Bingham et al, 1987).

Assume additionally that the family of failure rates (3) is ordered in z,
at least, ultimately:

λ(t, z1) < λ(t, z2), ∀z1, z2 ∈ [z0,∞), z1 < z2, z0 ≥ 0, t ≥ 0.

Then, as it was mentioned, Theorem 3 can be interpreted via the principle
that the mixture failure rate converges to the failure rate of the strongest
population. (Note that the right hand side in (17) also can be interpreted in
this case as the failure rate of the strongest population for a survival model,
defined by a random variable with the Cdf 1 − e−A(zφ(t)) ). An interesting
question arises: whether this principle is a ’universal law’, or a consequence
of sufficient assumptions of Theorem 3? Theorem 1 gives us an idea for
creating counter-examples:

Example 1 Assume that all conditions of Theorem 1 hold and additionally:
A′(s) is increasing in [0,∞). Then an ordering of failure rates in the family
(3) with respect to z (for each fixed t > 0) holds resulting formally in
the strongest population defined as λ(t, 0) = φ′(t). Note, however, that
1 − e−A(zφ(t)), z = 0, cannot be viewed as a Cdf. Therefore, the principle
under question implies that: λm(t) ∼ ψ′(t). On the other hand, it follows
from (10) that

λm(t) ∼ ψ′(t) + (α + 1)(log φ(t))′

and if the second term on the right hand side of this relation is increasing
faster than ψ′(t) as t → ∞, then this term defines asymptotic behavior of
λm(t). It is clear that it is possible for the fast increasing functions (e.g., for
exp{tn}, n ≥ 1). Thus, if then ψ′(t) = o((log φ(t))′), then

λm(t) ∼ (α + 1)(log φ(t))′,

whereas the Principle holds only when (log φ(t))′ = o(ψ′(t)).
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4 Specific models

4.1 Multiplicative (PH - proportional hazards) model

In the conventional notation the baseline failure rate is usually denoted as
λ0(t) (or λb(t)). Therefore model (4) reads

λ(t, z) = zλ0(t), Λ0(t) =

∫ t

0

λ0(u)du (18)

and the mixture failure rate is given by

λm(t) =

∫∞
0

zλ0(t)e
−zΛ0(t)π(z)dz∫∞

0
e−zΛ0(t)π(z)dz

. (19)

As A(u) ≡ u, φ(t) = Λ0(t), ψ(t) ≡ 0 in this specific case, theorems 1 and 3
are simplified to

Corollary 2 Assume that the mixing pdf π(z), z ∈ [0,∞) can be written as

π(z) = zαπ1(z), (20)

where α > −1 and π1(z) is bounded in [0,∞), continuous at z = 0 and
π1(0) 6= 0.

Then the mixture failure rate for the multiplicative model (18) has the
following asymptotic behavior:

λm(t) ∼ (α + 1)λ0(t)∫ t

0
λ0(u)du

. (21)

Corollary 3 Assume that the mixing pdf π(z), z ∈ [a,∞) (we can define
π(z) = 0, z ∈ [0, a)) is bounded, right semi-continuous at z = a and π(a) 6= 0.

Then, in accordance with relation (17), the mixture failure rate for the
model (18) has the following asymptotic behavior:

λm(t) ∼ aλ0(t) (22)

Corollary 2 states a remarkable fact: asymptotic behavior of the mixture
failure rate λm(t) depends only on the behavior of the mixing pdf in the
neighborhood of z = 0 and the baseline failure rate λ0(t).
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Corollary 3 describes the convergence of a mixture failure rate to the
mixture failure rate of the strongest population. In this simple multiplicative
case the family of the failure rates is trivially ordered in z and the strongest
population has the failure rate aλ0(t).

The next theorem generalizes the result of Corollary 3:

Theorem 4 Assume that the mixing pdf π(z) in model (18) has support in
[a, b], a < 0, b ≤ ∞, and for z ≥ a it can be defined as

π(z) = (z − a)απ1(z − a), (23)

where α > −1, π1(z) is bounded in [0, b− a] and π1(0) 6= 0.
Then

λm(t) ∼ aλ0(t). (24)

It is quite remarkable, that asymptotic result in this theorem does not
depend on a mixing distribution even in the case of a singularity at z = a.
This differs from the case a = 0 in Corollary 2. Relation (24) also describes
the convergence to the failure rate of the strongest population, which differs
dramatically from the convergence described by (21). Explanation of this
difference is quite obvious and due to the multiplicative nature of the model:
the behavior of zλ0(t) in the neighborhood of z = 0 for the pdf (20) is
different from the behavior of this product in the neighborhood of z = a for
the pdf (23).

The mixture failure rate given by equation (18) can be obtained explicitly
when the Laplace transform of the mixing pdf π̃(z) is easily computed like
in Example 2. As the cumulative failure rate is monotonically increasing in
t, the mixture survival function is written in terms of the Laplace transform
as:

∫ ∞

0

e−zΛ0(t)π(z)dz = π̃(Λ0(t)).

Therefore, equation turns into

λm(t) = −(π̃(Λ0(t)))
′

π̃(Λ0(t))
= −(log π̃(Λ0(t)))

′

and the corresponding inverse problem can be also solved: given the mix-
ture failure rate and the mixing distribution, obtain the baseline failure rate
(Finkelstein and Esaulova, 2001b).
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Example 2 Let the mixing distribution be the Gamma distribution with
the pdf

π(z) =
(z

b

)c−1

e−z/b 1

bΓ(c)
, (25)

where b, c > 0. The Laplace transform of π(z) is π̃(t) = (tb + 1)−c and
therefore the mixture failure rate is given by the following expression:

λm(t) =
bcλ0(t)

1 + b
∫ t

0
λ0(u)du

. (26)

The expected value of a random variable Z with a pdf (25) is bc and the
variance is b2c. Thus for the fixed expectation E[Z] = 1 the variance σ2 = b
and equation (26) turns into

λm(t) =
λ0(t)

1 + σ2
∫ t

0
λ0(u)du

, (27)

which first appeared in Vaupel et al (1979) in a demographic context. This
form al-lows to compare different mixtures for the fixed baseline distribution.
We can see that when the variance of the mixing distribution increases, the
mixture failure rate decreases.

Obviously, asymptotic behavior of λm(t) can be explicitly analyzed. Con-
sider two specific cases:

If the baseline distribution is Weibull with λ0 = λtβ, then the mixture
failure rate (26) is (see also Gupta and Gupta, 1996):

λm(t) =
(β + 1)λbctβ

(β + 1) + λbtβ+1
, (28)

which as t →∞ converges to 0 and λm(t) ∼ (β+1)ct−1 exactly as prescribed
by our formula (21) of Corollary 2 (c = α + 1).

If the baseline distribution is Gompertz with λ0(t) = µeβt, then simple
transformations result in

λm(t) =
βceβt

eβt +
(

β
µb
− 1

) . (29)

If b = β/µ, then λm(t) ≡ βc, if b > β/µ, then λm(t) increases to β/µ, and if
b < β/µ, it decreases to β/µ.
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Coming back to a discussion of convergence of the mixture failure rate
to the failure rate of the strongest population in Example 1 of Section 3, it
is reasonable to compare asymptotic behavior in (28) and (29) for the same
mixing distribution (25). In case of the Weibull Cdf, the mixture failure rate
is converging to 0. This means that within the framework of the multiplica-
tive model (18), where the family of failure rates is ordered in z, we still can
speak in terms of convergence to the failure rate of the strongest population,
defining the case z = 0 as some ’generalized’ (or formal) strongest failure
rate: λ(t, 0) = 0. As it was mentioned, 1 − e−A(zφ(t)) cannot be viewed as a
Cdf in this case, which formally violates our general assumptions in Section
2. But the failure rate for a Gompertz Cdf does not converge to 0, it con-
verges to a constant, thus violating the principle of converging to the failure
rate of the strongest population even formulated in a ’generalized’ form! The
reason for that, and this goes in line with our discussion in Example 1, is
in the fast increase in the function φ(t), which is proportional to eβt in the
latter case.

4.2 Accelerated life model

In a conventional notation this model is written as:

λ(t, z) = zλ0(tz), Λ(t, z) = Λ0(tz) =

∫ tz

0

λ0(u)du (30)

Although the definition of the ALM is also very simple, the presence of a
mixing parameter z in the arguments make analysis of the mixture failure rate
more complex than in the multiplicative case. Therefore, as it was already
mentioned, this model was not practically studied before. The mixture failure
rate in this specific case is

λm(t) =

∫∞
0

zλ0(tz)e−Λ0(tz)π(z)dz∫∞
0

e−Λ0(tz)π(z)dz
. (31)

Asymptotic behavior of λm(t) can be described as a specific case of The-
orem 1 with A(s) = Λ0(s), φ(t) = t and ψ(t) ≡ 0:

Corollary 4 Assume that the mixing pdf π(z), z ∈ [0,∞) can be defined as
π(z) = zαπ1(z), where α > 1, π1(z) is continuous at z = 0 and bounded in
[0,∞), π1(0) 6= 0.
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Let the baseline distribution with the cumulative failure rate Λ0(t) have a
moment of order α + 1. Then

λm(t) ∼ α + 1

t
(32)

as t →∞.

The conditions of Corollary 4 are not that strong and are relatively nat-
ural. The most of the widely used lifetime distributions have all moments.
The Pareto distribution will be discussed in the next example.

As it was already stated, the conditions on the mixing distribution hold,
e.g., for the Gamma and the Weibull distributions which are commonly used
as mixing distributions.

Relation (32) is really surprising, as it does not depend on the baseline
distribution, which seems striking at least at the first sight. It is also dra-
matically different from the multiplicative case (21). It follows from Example
2 that both asymptotic results coincide in the case of the Weibull baseline
distribution, which is obvious, as only for the Weibull distribution the ALM
can be re-parameterized to end up with a PH model and vise versa.

The following example shows other possibilities for the asymptotic be-
havior of λm(t) when one of the conditions of the Corollary 4 does not hold.

Example 3 Consider the Gamma mixing distribution π(z) = zαe−x/Γ(α +
1). Let the baseline distribution be the Pareto distribution with density
f0(t) = β/tβ+1, t ≥ 1, β > 0.

For β > α + 1 the conditions of Corollary 2 holds and relation (32) takes
place. Let β ≤ α + 1, which means that the baseline distribution doesn’t
have the (α + 1)th moment. Therefore, one of the conditions of Corollary 4
is violated. In this case it can be shown by direct derivations (see Section 5)
that

λm(t) ∼ β

t
as t →∞, whereas for the general case:

λm(t) ∼ min(β, α + 1)

t
.

It can be shown that the same asymptotic relation holds not only for the
Gamma-distribution, but also for any other mixing distribution π(z) of the
form π(z) = zαπ1(z). If β > α + 1, the function π1(z) should be bounded
and π1(0) 6= 0.
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As A(s) = Λ0(s), φ(t) = t, Theorem 3 is simplified to

Corollary 5 Assume that the mixing pdf π(z), z ∈ [a,∞) is bounded, con-
tinuous at z = a and π(a) 6= 0. Let

λ′0(t)
(λ0(t))2

→ 0, tλ0(t) →∞ (33)

as t → ∞. Assume also that ∀ b, c > 0, b < c the quotient λ0(bx)/λ0(cx)
is bounded as x → ∞. Then, in accordance with relation (17), the mixture
failure rate for the model (30) has the following asymptotic behavior:

λm(t)− ψ′(t) ∼ aλ0(at). (34)

Conditions (33) are rather weak. E.g., the marginal case of the Pareto
distribution - the baseline failure rate of the form λ0(t) = ct−1, c > 0, t ≥ 1
does not comply with (33), but in mixing we are primarily interested in
increasing, at least ultimately, baseline failure rates.

Asymptotic behavior of λm(t) in the additive hazards model (6) due
to its simplicity does not deserve special attention. As A(s) ≡ s and φ(t) ≡ t,
conditions (8) and (9) of Theorem 1, for instance, hold and asymptotic result
(10) is simplified to:

λm(t)− ψ′(t) ∼ α + 1

t
.

5 Proofs

5.1 Proof of Theorem 1

First we need a simple lemma for Dirac sequence of functions:

Lemma 1 Let g(z), h(z) be nonnegative locally integrable functions in [0,∞)
satisfying the following conditions:

∫ ∞

0

g(z)dz < ∞,

and h(z) is bounded and continuous at z = 0.
Then, as t →∞:

t

∫ ∞

0

g(tz)h(z)dz → h(0)

∫ ∞

0

g(z)dz. (35)
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Proof Substituting u = tz:

t

∫ ∞

0

g(tz)h(z)dz =

∫ ∞

0

g(u)h(u/t)du.

The function h(u) is bounded and h(u/t) → 0 as t → ∞, thus convergence
(35) holds by dominated convergence theorem. ¤

Now we prove Theorem 1. The proof is straightforward as we use defini-
tion (1) and Lemma 1.

The survival function for the model (2) is

F̄ (t, z) = e−A(zφ(t))−ψ(t).

Taking into account that φ(t) → ∞ as t → ∞, and applying Lemma 1 to
the function g(u) = e−A(u)uα:

∫ ∞

0

F̄ (t, z)π(z)dz =

∫ ∞

0

e−A(zφ(t))−ψ(t)zαπ1(z)dz

∼ e−ψ(t)π1(0)

φ(t)α+1

∫ ∞

0

e−A(s)sαds, (36)

where the integral is finite due to the condition (9). The corresponding
probability density function is:

f(t, z) = (A′(zφ(t))zφ′(t) + ψ′(t))e−A(zφ(t))−ψ(t)

= A′(zφ(t))zφ′(t)e−A(zφ(t))−ψ(t) + ψ′(t)F̄ (t, z).

Similarly, applying Lemma 1:
∫ ∞

0

f(t, z)π(z)dz − ψ′(t)
∫ ∞

0

F̄ (t, z)π(z)dz

= φ′(t)e−ψ(t)

∫ ∞

0

A′(zφ(t))e−A(zφ(t))zα+1π1(z)dz

∼ φ′(t)e−ψ(t)π1(0)

φ(t)α+2

∫ ∞

0

A′(s)e−A(s)sα+1ds. (37)

Due to condition (9) and the fact, that A(s) is ultimately increasing,

A(s)sα+1 → 0 as t →∞. (38)
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Indeed, by the mean value theorem

∫ 2s

s

e−A(u)uαdu = se−A(s1)sα
1

for some s ≤ s1 ≤ 2s. The right-hand side tends to 0. For s larger than some
s0 we have A(s1) > A(s), thus, the left-hand side is smaller than 2αsα+1e−A(s),
and this leads to (38). Using it while integrating by parts we get

∫ ∞

0

A′(s)e−A(s)sα+1ds = (α + 1)

∫ ∞

0

e−A(s)sαds. (39)

Combining (36)-(39), finally:

∫∞
0

f(t, z)π(z)dz∫∞
0

F̄ (t, z)π(z)dz
− ψ′(t) ∼ (α + 1)

φ′(t)
φ(t)

.

5.2 Proof of Theorem 2

Lemma 2 Let {g(t, z), z ∈ [0,∞)} be a family of functions and h(z) a func-
tion, satisfying the following conditions:

(i) for every z ∈ [0,∞) the function g(t, z) is integrable in t and for every
t ∈ [0,∞) it is integrable in z.

(ii) there exists a function α(t), α(t) → 0 as t →∞ and

∫ α(t)

0
g(t, z)dz∫∞

0
g(t, z)dz

→ 1 (40)

as t →∞.

(iii) a function h(x) is locally integrable, bounded in [0,∞) and continuous
at z = 0.

Then, as t →∞: ∫∞
0

g(t, z)h(z)dz∫∞
0

g(t, z)dz
→ h(0).
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Proof Let h(z) ≤ M, z ∈ [0,∞). Then:

∫∞
0

g(t, z)h(z)dz∫∞
0

g(t, z)dz
=

∫ α(t)

0
g(t, z)h(z)dz∫∞

0
g(t, z)dz

+

∫∞
α(t)

g(t, z)h(z)dz∫∞
0

g(t, z)dz
.

The second term is majorized by

M

∫∞
α(t)

g(t, z)dz∫∞
0

g(t, z)dz

which is due to condition (40). The first term converges to h(0) due to the
same condition and the fact that h(z) is continuous at z = 0. ¤

For proving Theorem 2 we first show in a direct way that for F̄ (t, z) there
holds a condition similar to (11). For every ε > 0 we choose tε such that for
u > tε the function α(u) already decreases and

∫ α(u)

0

f(u, z)π(z)dz > (1− ε)

∫ ∞

0

f(u, z)π(z)dz.

Since α(t) decreases

∫ α(t)

0

f(u, z)π(z) >

∫ α(u)

0

f(u, z)π(z)dz

for u > t > tε. Thus

∫ α(t)

0

F̄ (t, z)π(z)dz =

∫ α(t)

0

∫ ∞

t

f(u, z)du π(z)dz

=

∫ ∞

t

∫ α(t)

0

f(u, z)π(z)dz du

>

∫ ∞

t

∫ α(u)

0

f(u, z)π(z)dz du

> (1− ε)

∫ ∞

t

∫ ∞

0

f(u, z)π(z)dz du

= (1− ε)

∫ ∞

0

F̄ (t, z)π(z)dz.
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Now we apply Lemma 2 with h(z) = π1(z)/π(z) and g(t, z) = f(t, z)π(z),
which results in ∫∞

0
f(t, z)ρ(z)dz∫∞

0
f(t, z)ρ(z)dz

→ h(0).

In a similar way g(t, z) = F̄ (t, z)π(z) with the same h(z) gives

∫∞
0

F̄ (t, z)ρ(z)dz∫∞
0

F̄ (t, z)ρ(z)dz
→ h(0),

as t →∞, and relation (12) follows immediately.

5.3 Proof of Theorem 3

This theorem is rather technical and we must first prove three supplementary
lemmas, which present consecutive steps on a way to asymptotic relation (17).

Lemma 3 Let h(x) be a twice differentiable function with an ultimately pos-
itive derivative, and ∫ ∞

0

e−h(y)dy < ∞. (41)

Let also
h′′(x)

(h′(x))2
→ 0 (42)

as x →∞. Then ∫ ∞

x

e−h(y)dy ∼ e−h(x) 1

h′(x)
(43)

as x →∞.

Proof Let x0 be such that h′(x) > 0 for x > x0. Due to (41) h(x) →∞
as x → ∞. Then there exists an inverse function g(x) defined in [x0,∞):
g(h(x)) ≡ h(g(x)) ≡ 1. The function g(x) is also twice differentiable and
g′(x) = 1/h′(g(x)). Integrating by parts for x > x0:

∫ ∞

x

e−h(y)dy =

∫ ∞

h(x)

e−ug′(u)du

= e−h(x)g′(h(x)) +

∫ ∞

h(x)

e−ug′′(u)du. (44)
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Since
g′′(u)

g′(u)
= − h′′(g(u))

h′(g(u))2
→ 0

as u → ∞, the right-hand side integral vanishes compared with the one on
the left-hand side. Therefore, eventually

∫ ∞

x

e−h(y)dy ∼ e−h(x)g′(h(x)) = e−h(x) 1

h′(x)
.

¤

Lemma 4 Let assumptions of Lemma 3 hold. Assume additionally that as
x →∞

xh′(x) →∞ (45)

and for any b, c ≥ a, b < c the quotient h′(bx)/h′(cx) is bounded in [0,∞).
Let µ(u) be a positive, bounded and locally integrable function, defined in

[a,∞), continuous at u = a, and µ(a) 6= 0.
Then ∫ ∞

a

e−h(ux)µ(u)du ∼ µ(a)e−h(ax)

xh′(ax)
as x →∞.

Proof As the first step we prove that:

I(x) =

∫ ∞

a

e−h(ux)µ(u)du ∼ µ(a)

∫ ∞

a

e−h(ux)du

As µ(u) is continuous at u = a, for ε > 0 there is δ such that |µ(u)−µ(a)| < ε,
if |u − a| < δ. The function µ(u) is bounded, therefore, µ(u) < M, ∀u ∈
[a,∞) for some positive M > µ(a). Then

I(x) =

∫ a+δ

a

e−h(ux)µ(u)du +

∫ ∞

a+δ

e−h(ux)µ(u)du

and

|I(x)− µ(a)

∫ ∞

a

e−h(ux)du|

< ε

∫ a+δ

a

e−h(ux)du + (M − µ(a))

∫ ∞

a+δ

e−h(ux)du

= ε

∫ ∞

a

e−h(ux)du + (M − µ(a)− ε)

∫ ∞

a+δ

e−h(ux)du.
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Then

∣∣∣∣
I(x)

µ(a)
∫∞

a
e−h(ux)du

− 1

∣∣∣∣ <
ε

µ(a)
+

M − µ(a)− ε

µ(a)
·
∫∞

a+δ
e−h(ux)du∫∞

a
e−h(ux)du

(46)

Using Lemma 3:

∫∞
a+δ

e−h(ux)du∫∞
a

e−h(ux)du
=

∫∞
ax+δx

e−h(u)du∫∞
ax

e−h(u)du
∼ h′(ax)

h′(ax + δx)
e−(h(ax+δx)−h(ax))

It follows from the condition (45) and mean value theorem that

h(ax + δx)− h(ax) = δxh′(s) > sh′(s)
δ

a + δ
(47)

for some ax < s < ax + δx. Thus h(ax + δx) − h(ax) → ∞ as x → ∞, the
quotient h′(ax)/h′(ax + δx) is bounded and, therefore, the second summand
in (46) tends to zero, whereas the first summand can be made arbitrarily
small. This yields

I(x) ∼ µ(a)

∫ ∞

a

e−h(ux)du

as x →∞. Applying Lemma 3 completes the proof. ¤

Lemma 5 Under assumptions of Lemma 4 the following asymptotic relation
holds as x →∞

∫ ∞

a

h′(ux)e−h(ux)uµ(u)du ∼ aµ(a)

x
e−h(ax).

Proof We first show that
∫ ∞

a

h′(ux)e−h(ux)u du ∼ a

x
e−h(ax). (48)

Simple calculations give

x2

∫ ∞

a

h′(ux)e−h(ux)u du =

∫ ∞

ax

h′(u)e−h(u)u du

= axe−h(ax) +

∫ ∞

ax

e−h(u)du.
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By Lemma 4: ∫ ∞

ax

e−h(u)du ∼ e−h(ax) 1

h′(ax)
.

We have assumed that axh′(ax) →∞ as x →∞, thus 1
h′(ax)

= o(ax) and

x2

∫ ∞

0

h′(ux)e−h(ux)u du ∼ axe−h(ax),

which is the same as (48).
The next step is to prove that

∫ ∞

a

h′(ux)e−h(ux)uµ(u)du ∼ µ(a)

∫ ∞

a

h′(ux)e−h(ux)u du (49)

As in Lemma 4, we use the same ε, δ,M and the similar reasoning to get

∣∣∣∣∣

∫∞
a

h′(ux)e−h(ux)uµ(u)du

µ(a)
∫∞

a
h′(ux)e−h(ux)u du

− 1

∣∣∣∣∣ <
ε

µ(a)
+

M̃

µ(a)
·
∫∞

a+δ
h′(ux)e−h(ux)u du∫∞

a
h′(ux)e−h(ux)u du

,

where M̃ = M − µ(a)− ε.
Applying (48) and using (47) we obtain:

∫∞
a+δ

h′(ux)e−h(ux)u du∫∞
a

h′(ux)e−h(ux)u du
∼ a + δ

a
e−(h(ax+δx)−h(ax)) → 0

as x →∞. Again ε/µ(a) can be made arbitrarily small, which gives us (49).
Combining it with (48) completes the proof. ¤

Now we are ready to prove Theorem 3 itself. Applying Lemma 4 as t →∞
results in:

∫ ∞

a

F̄ (t, z)π(z)dz =

∫ ∞

a

e−A(zφ(t))−ψ(t)π(z)dz

= e−ψ(t)

∫ ∞

a

e−A(zφ(t))π(z)dz

∼ π(a)e−ψ(t)

φ(t)A′(aφ(t))
e−A(aφ(t)).

23



Similar to the proof of Theorem 1:
∫ ∞

a

f(t, z)π(z)dz − ψ′(t)
∫ ∞

a

F̄ (t, z)π(z)dz

= φ′(t)e−ψ(t)

∫ ∞

a

A′(zφ(t))e−A(zφ(t))zπ(z)dz.

Using Lemma 5:
∫ ∞

a

A′(zφ(t))e−A(zφ(t))zπ(z)dz ∼ aπ(a)

φ(t)
e−A(aφ(t)).

Combining the last three statements arrive at (17)

λm(t)− ψ′(t) =

∫∞
a

f(t, z)π(z)dz∫∞
a

F̄ (t, z)π(z)dz
− ψ′(t)

=
φ′(t)e−ψ(t)aπ(a)e−A(aφ(t))

φ(t)
· A′(aφ(t))φ(t)

π(a)e−ψ(t)e−A(aφ(t))

= aφ′(t)A′(aφ(t)).

5.4 Proof of Theorem 4

As in Theorem 1, we consider the numerator and the denominator in (19)
separately. Changing the variables and applying Lemma 1:

∫ ∞

0

F̄ (tz)π(z)dz =

∫ ∞

a

e−zΛ0(t)(z − a)απ1(z − a)dz

= e−aΛ0(t)

∫ ∞

0

e−zΛ0(t)zαπ1(z)dz

∼ e−aΛ0(t)π1(0)Γ(α + 1)

(Λ0(t))α+1
. (50)

Similarly,
∫ ∞

0

zf(tz)π(z)dz = λ0(t)

∫ ∞

a

ze−zΛ0(t)(z − a)απ1(z − a)dz

= λ0(t)e
−aΛ0(t)

∫ ∞

0

e−zΛ0(t)zα+1π1(z)dz

+ aλ0(t)e
−aΛ0(t)

∫ ∞

0

e−zΛ0(t)zαπ1(z)dz.
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The first integral on the right hand side as t →∞ is equivalent to π1(0)Γ(α+
2)(Λ0(t))

−α−2 and the second to π1(0)Γ(α+1)(Λ0(t))
−alpha−1, which decreases

slower. Thus
∫ ∞

0

zf(tz)π(z)dz ∼ aπ1(0)Γ(α + 1)λ0(t)
e−aΛ0(t)

(Λ0(t))α+1
. (51)

Finally using (50) and (51) in (19), we arrive at (24).

5.5 Proof of the Example 3

Calculating directly:

∫ ∞

0

f0(tz)zπ(z)dz =

∫ ∞

1/t

βz

tβ+1zβ+1
· 1

Γ(α + 1)
e−zzαdz

=
β

Γ(α + 1)tβ+1

∫ ∞

1/t

zα−βe−zdz

∼ Γ(α− β + 1)β

Γ(α + 1)tβ+1

and
∫ ∞

0

F̄0(tz)π(z)dz =

∫ 1/t

0

e−zzα

Γ(α + 1)
dz +

∫ ∞

1/t

1

tβzβ
· e−zzα

Γ(α + 1)
dz,

As t →∞ the first integral on the right-hand side is equivalent to

1

Γ(α + 1)

∫ 1/t

0

zαdz =
1

tα+1Γ(α + 2)

and the second integral is equivalent to Γ(α− β + 1)/Γ(α + 1)tβ, which in
case β ≤ α decreases slower; therefore the sum of two integrals is equivalent
to Γ(α− β + 1)/Γ(α + 1)tβ.

Eventually

λm(t) ∼ Γ(α− β + 1)β

Γ(α + 1)tβ+1
· Γ(α + 1)tβ

Γ(α− β + 1)
=

β

t
.

If β = α + 1, then
∫ ∞

0

zf0(tz)π(z)dz =
α + 1

Γ(α + 1)tα+2

∫ ∞

1/t

z−1e−zdz,
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and since ∫ 1/t

0

zαdz = o

(
t−α−1

∫ ∞

1/t

z−1e−zdz

)

we obtain:
∫ ∞

0

F̄0(tz)π(z)dz ∼
∫ ∞

1/t

1

tα+1z
· e−z

Γ(α + 1)
dz

=
1

tα+1Γ(α + 1)

∫ ∞

1/t

z−1e−zdz.

Therefore

λm(t) ∼ α + 1

t
=

β

t
.

6 Concluding remarks

Two types of results on the mixture failure rates modelling were primarily
considered in the literature. On one hand, general asymptotic results of
Clarotti and Spizzichino (1990), Block and Joe (1997) and Block et al (1993),
where under rather stringent conditions a general asymptotic behavior of the
mixture failure rate was studied, on the other hand, specific proportional
(additive) hazards-type models of Gurland and Sethuraman (1995), Lynn
and Singpurwalla, (1997), Finkelstein and Esaulova (2001a), to name a few,
where some more detailed convergence properties were described. It is worth
noting, however, that asymptotic behavior of the mixture failure rate for
the accelerated life model was not studied before, as approaches used for
portional hazards and additive hazards models, did not work in that case.

The survival model (2) of this paper generalizes all three conventional
models and creates possibility of deriving explicit asymptotic results. Theo-
rem 1, e.g., defines asymptotic mixture failure rate for the case when the mix-
ing variable is defined in [0,∞), whereas Theorem 3 does so for [a,∞), a > 0.

Some of the obtained results can be generalized to a wider than (2) class
of life-time distributions, but it looks like that the considered class is, in a
way, ’optimal’ in terms of the trade-off between the complexity of a model
and tractability (or applicability) of results.
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